Determining feature weights using a genetic algorithm in a case-based reasoning approach to personnel rostering
نویسندگان
چکیده
Personnel rostering problems are highly constrained resource allocation problems. Human rostering experts have many years of experience in making rostering decisions which reflect their individual goals and objectives. We present a novel method for capturing nurse rostering decisions and adapting them to solve new problems using the Case-Based Reasoning (CBR) paradigm. This method stores examples of previously encountered constraint violations and the operations that were used to repair them. The violations are represented as vectors of feature values. We investigate the problem of selecting and weighting features so as to improve the performance of the case-based reasoning approach. A genetic algorithm is developed for off-line feature selection and weighting using the complex data types needed to represent real-world nurse rostering problems. This approach significantly improves the accuracy of the CBR method and reduces the number of features that need to be stored for each problem. The relative importance of different features is also determined, providing an insight into the nature of expert decision making in personnel rostering.
منابع مشابه
Selecting and weighting features using a genetic algorithm in a case-based reasoning approach to personnel rostering
Personnel rostering problems are highly constrained resource allocation problems. Human rostering experts have many years of experience in making rostering decisions which reflect their individual goals and objectives. We present a novel method for capturing nurse rostering decisions and adapting them to solve new problems using the Case-Based Reasoning (CBR) paradigm. This method stores exampl...
متن کاملA novel approach to finding feasible solutions to personnel rostering problems
Classical meta-heuristic methods for solving rostering problems focus on defining measures of roster quality. Here we present a new case-based reasoning approach to generating repairs of hard constraint violations using expert-human experience. This approach is used to guide heuristic constraint satisfaction algorithms, eliminating the need to explicitly define search objectives.
متن کاملSolving a nurse rostering problem considering nurses preferences by graph theory approach
Nurse Rostering Problem (NRP) or the Nurse Scheduling Problem (NSP) is a complex scheduling problem that affects hospital personnel on a daily basis all over the world and is known to be NP-hard.The problem is to decide which members of a team of nurses should be on duty at any time, during a rostering period of, typically, one month.It is very important to efficiently utilize time and effort, ...
متن کاملAn Efficient Target Tracking Algorithm Based on Particle Filter and Genetic Algorithm
In this paper, we propose an efficient hybrid Particle Filter (PF) algorithm for video tracking by employing a genetic algorithm to solve the sample impoverishment problem. In the presented method, the object to be tracked is selected by a rectangular window inside which a few numbers of particles are scattered. The particles’ weights are calculated based on the similarity between feature vecto...
متن کاملA Hyperheuristic Approach to Belgian Nurse Rostering Problems
The nurse rostering problem involves the assignment of shifts to nurses with respect to several constraints like workload, legal restrictions, and contractual agreements [9]. The complexity of the problem attracts many researchers around the world. Since the regulations, requirements, and agreements differ from country to country, the models and solution methods differ as well [9]. The solution...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004